Перевод из дб в разы формула

Перевод величин из децибелов в абсолютные значения и мощность

При проведении измерений параметров радиоаппаратуры довольно часто приходится иметь дело с относительными величинами выраженными в децибелах [дБ]. В децибелах выражают интенсивность звука, усиление каскада по напряжению, току или мощности, потери передачи или ослабление сигнала, и т.д.

Децибел — это универсальная логарифмическая единица. Широкое использование представления величин в дБ связано с удобством логарифмического масштаба, а при расчетах децибелы подчиняются законам арифметики — их можно складывать и вычитать, если сигналы имеют одинаковую форму.

Существует формула для пересчета отношения двух напряжений в число децибелов (аналогичная формула справедлива и для токов):

Например, если выходной сигнал U2 имеет уровень вдвое больше, чем U1, то это отношение составит +6 дБ (Ig2=0,301). Если U2>U1 в 10 раз, то отношение сигналов составляет 20 дБ (Ig10=1). Если U1>U2, то знак у отношения меняется на минус 20 дБ.

Так, например, у измерительного генератора аттенюатор для ослабления выходного сигнала может иметь градуировку в дБ. В этом случае для перевода величины из децибелов в абсолютное значение быстрей будет получен результат, если воспользоваться уже посчитанной табл. 6; 1. Она имеет дискретность 1 дБ (что вполне достаточно в большинстве случаев) и диапазон значений 0. -119 дБ.

Табл. 6.1 можно использовать для перевода децибелов ослабления аттенюатора в уровень выходного напряжения. Для удобства использования таблицы потребуется на выходе генератора установить при отсутствии ослабления (0 дБ на аттенюаторе) уровень напряжения 1 В (действующего или амплитудного). В этом случае соответствующее нужное значение выходного напряжения после установки ослабления находится на пересечении горизонтальной и вертикальной граф (значения в децибелах складываются арифметически).

Величина выходного напряжения в таблице указана в микровольтах (1 мкВ=10-6 В). I

Воспользовавшись данной таблицей, не трудно решить и обратную задачу — по необходимому напряжению определить, какое нужно установить ослабление сигнала на аттенюаторе в децибелах. Например, чтобы получить на выходе генератора напряжения 5 мкВ, как видно из таблицы, на аттенюаторе потребуется установить ослабление 100+6=106 дБ. Отношение мощностей двух сигналов в децибелах вычисляется по формуле:

Формула для мощности справедлива при условии, что входное и выходное сопротивления устройства одинаковые, что часто выполняется в высокочастотных устройствах для облегчения их согласования между собой.

Для определения мощности можно воспользоваться посчитанной табл. 6.2

Нередко при практическом использовании дБ важно знать и абсолютное значение соотношения двух величин, т.е. во сколько раз напряжение или мощность на выходе больше, чем на входе (или наоборот). Если отношение двух величин обозначить: K=U2/U1 или К=Р2/Р1, то можно воспользоваться табл. 6.3 для перевода величины из дБ в разы (К) и наоборот.

Так, например, антенный усилитель обеспечивает усиление сигнала по мощности на 28 дБ. Из табл. 6.3 видно, что усиление сигнала выполняется в 631 раз.

Литература: И.П. Шелестов — Радиолюбителям полезные схемы, книга 3.

Онлайн калькулятор перевода децибел в разы, напряжений в мощность.

Децибел. Что за странный пассажир? Ладно бы дебил, или, на худой конец, имбецил, так ведь нет — децибел, мать его.
Выпили по децелу, закусили, понимания не прибавило, ещё по сто, уже лучше — начали генерить мыслю.
И на кой хрен нам в батарее разводить мудрёные величины, да ещё (не при бабах будет сказано), численно равные десятичному логарифму безразмерного отношения физической величины к одноимённой физической величине, принимаемой за исходную, умноженному на десять?
Всё равно — как отмеряли потери сигнала в линиях километрами стандартного кабеля, так и будем отмерять.

Ответ не сложен — для удобства мировосприятия.
Природа наша такова, что воздействие на органы чувств многих физических и биологических процессов пропорционально не амплитуде входного воздействия, а логарифму входного воздействия. Поэтому и созерцать отображения больших диапазонов изменяющихся величин удобнее всего в логарифмическом масштабе.

Итак, децибелы — это соотношение двух величин, выраженное в логарифмическом масштабе. При этом отношение токов и напряжений имеет коэффициент 20, а отношение мощностей — коэффициент 10.
Для напряжений формула приобретает вид , а для мощностей — .
Если в лесах Чухломы у нас затерялось какое-либо электронное устройство, то в качестве отношения напряжений (либо токов, либо мощностей) принимается отношение выходной величины к входной, и это отношение называется коэффициентом передачи, или коэффициентом преобразования данного устройства.

Читать еще:  Сколько звезд на флаге бразилии

Пока хватит, нарисуем таблицу.

ТАБЛИЦА ПЕРЕВОДА ОТНОШЕНИЙ ВЕЛИЧИН В ДЕЦИБЕЛЛЫ

Коэффициент передачи, выраженный в децибелах, может иметь знак плюс или минус в зависимости от соотношения величин на выходе и входе (если выходная величина больше входной — плюс, если меньше — минус).

А ТЕПЕРЬ НАОБОРОТ, ДЕЦИБЕЛЛЫ В ОТНОШЕНИЯ

В случае включения по каскадной схеме (последовательно, друг за другом) нескольких устройств — общий коэффициент передачи в децибельном выражении вычисляется простым сложением значений Кпер.(дБ) каждого из устройств.

А теперь переведём логарифмическую меру мощности, измеряемую в дБм (dBm — децибел на милливатт) в мощность устройства, измеряемую в привычных нашему организму ваттах.
Формула выглядит так: . Для чего нам сдался этот дБм?
На всякий пожарный — некоторые производители указывают именно этот параметр, характеризуя богатырскую мощь своих изделий.

ТАБЛИЦА ПЕРЕВОДА ДБМ В ВАТТЫ

Так ведь мало того, что мощность усилителей надумали измерять в дБм, посягнули и на святое — на чувствительность приёмной аппаратуры. Чувствительность стали определять как отношение мощности на входе приёмника к уровню мощности 1 мВт и также выражать в логарифмическом масштабе в дБм.
Куда деваться бедному крестьянину? Придётся привести таблицу и для этого бесчинства.

ТАБЛИЦА ПЕРЕВОДА ДБМ В МИКРОВОЛЬТЫ

А ещё, иногда бывает полезно знать, каким должен быть размах выходного напряжения на нагрузке, для получения заданного параметра мощности. Некоторые при расчёте выходной мощности пользуются простой формулой , подставляя вместо Uд — пиковое значение (амплитудное значение, равное максимальной амплитуде полуволны выходного сигнала). Это не правильно, вернее правильно только для сигналов прямоугольной формы. Для синусоидальных, для получения точного результата надо подставлять действующее значение напряжения — .
Лучше понять, что такое амплитудное значение, и как найти действующее для различных форм сигналов можно на странице ссылка на страницу.

ЗАВИСИМОСТЬ АМПЛИТУДЫ НАПРЯЖЕНИЯ ОТ МОЩНОСТИ

ЗАВИСИМОСТЬ МОЩНОСТИ ОТ ВЫХОДНОГО НАПРЯЖЕНИЯ

Децибелы «по мощности», «по напряжению» и «по току»

Из правила (см. выше) следует, что дБ бывают только «по мощности». Тем не менее, в случае равенства R1 = R (в частности, если R1 и R — одно и то же сопротивление, или в случае, если соотношение сопротивлений R1 и R по той или иной причине не важно) говорят о дБ «по напряжению» и «по току», подразумевая при этом выражения:

дБ по напряжению = ;

дБ по току = .

Для перехода от «дБ по напряжению» («дБ по току») к «дБ по мощности» следует чётко определить, на каких именно сопротивлениях (равных или не равных друг другу) регистрировались напряжение (ток). Если R1 не равно R, следует пользоваться выражением для общего случая (см. выше).

Нетрудно подсчитать, что, в частности:

при регистрации мощности изменению на +1 дБ (+1 дБ «по мощности») соответствует приращение мощности в ≈1,259 раза, изменению на −3,01 дБ — снижение мощности в два раза, в то время как

при регистрации напряжения (силы тока) изменению на +1 дБ (+1 дБ «по напряжению», «по току») будет соответствовать приращение напряжения (силы тока) в ≈1,122 раза, при изменении на −3,01 дБ напряжение (сила тока) снизятся и составят ≈ 0,707 от своего исходного значения.

Примеры вычислений Переход к дБ

Пусть значение мощности P1 стало в 2 раза больше исходного значения мощности P, тогда

10 lg(P1/P) = 10 lg(2) ≈3,0103 дБ ≈ 3 дБ,

то есть рост мощности на 3 дБ означает её увеличение в 2 раза.

Пусть значение мощности P1 стало в 2 раза меньше исходного значения мощности P, то есть P1 = 0,5 P. Тогда

то есть снижение мощности на 3 дБ означает её снижение в 2 раза. По аналогии:

рост мощности в 10 раз: 10 lg(P1/P) = 10 lg(10) = 10 дБ, снижение в 10 раз: 10 lg(P1/P) = 10 lg(0,1)= −10 дБ;

рост в 1 млн раз: 10 lg(P1/P) = 10 lg(1 000 000) = 60 дБ, снижение в 1 млн раз: 10 lg(P1/P) = 10 lg(0,000001) = −60 дБ.

Переход от дБ к «разам»

Изменение «в разах» по известному изменению в дБ (условное обозначение «dB» в формулах ниже) вычисляется следующим образом:

Читать еще:  Затопили что делать

для мощности: ; таким образом, например, если изменение мощности составило +20 децибел, это значит, что «P1 больше P на два порядка» или «P1 больше P в 100 раз»;

для напряжения (силы тока): ; таким образом, например, если изменение напряжения составило +20 децибел, это значит, что «U1больше U на порядок» или «в 10 раз».

Что такое децибел?

Перевод из децибел в разы и обратно

Довольно часто в популярной радиотехнической литературе, в описании электронных схем употребляется единица измерения – децибел (дБ или dB).

При изучении электроники начинающий радиолюбитель привык к таким абсолютным единицам измерения как Ампер (сила тока), Вольт (напряжение и ЭДС), Ом (электрическое сопротивление) и многим другим, с помощью которых обозначают количественно тот или иной электрический параметр (ёмкость, индуктивность, частоту).

Начинающему радиолюбителю, как правило, не составляет особого труда разобраться, что такое ампер или вольт. Тут всё понятно, есть электрический параметр или величина, которую нужно измерить. Есть начальный уровень отсчёта, который принимается по умолчанию в формулировке данной единицы измерения. Есть условное обозначение этого параметра или величины (A, V). И вправду, как только мы читаем надпись 12 V, то мы понимаем, что речь идёт о напряжении, аналогичном, например, напряжению автомобильной аккумуляторной батареи.

Но как только встречается надпись, к примеру: напряжение повысилось на 3 дБ или мощность сигнала составляет 10 дБм (10 dBm), то у многих возникает недоумение. Как это? Почему упоминается напряжение или мощность, а значение указывается в каких-то децибелах?

Практика показывает, что не многие начинающие радиолюбители понимают, что же такое децибел. Попытаемся развеять непроглядный туман над такой таинственной единицей измерения как децибел.

Что такое децибел?

Единицу измерения под названием Бел стали впервые применять инженеры телефонной лаборатории Белла. Децибел является десятой частью Бела (1 децибел = 0,1 Бел). На практике широко используется как раз децибел.

Как уже говорилось, децибел, это особенная единица измерения. Стоит отметить, что децибел не является частью официальной системы единиц СИ. Но, несмотря на это, децибел получил признание и занял прочное место наряду с другими единицами измерения.

Вспомните, когда мы хотим объяснить какое-либо изменение, мы говорим, что, например, стало ярче в 2 раза. Или, например, напряжение упало в 10 раз. При этом мы устанавливаем определённый порог отсчёта, относительно которого и произошло изменение в 10 или 2 раза. С помощью децибел также измеряют эти “разы”, только в логарифмическом масштабе.


График логарифмической зависимости

Например, изменение на 1 дБ, соответствует изменению энергетической величины в 1,26 раза. Изменение на 3 дБ соответствует изменению энергетической величины в 2 раза.

Но зачем так заморачиваться с децибелами, если отношения можно измерять в разах? На этот вопрос нет однозначного ответа. Но уж, поскольку, децибелы активно применяются, то наверняка это оправдано.

Причины для использования децибел всё-таки есть. Перечислим их.

Частично ответ на этот вопрос кроется в так называемом законе Вебера-Фехнера. Это эмпирический психофизиологический закон, т.е основан он на результатах реальных, а не теоретических экспериментов. Суть его заключается в том, что любые изменения каких-либо величин (яркости, громкости, веса) ощущаются нами при условии, если эти изменения носят логарифмический характер.


График зависимости ощущения громкости от силы (мощности) звука. Закон Вебера-Фехнера

Так, например, чувствительность человеческого уха уменьшается с ростом уровня громкости звукового сигнала. Именно поэтому, при выборе переменного резистора, который планируется применить в регуляторе громкости звукового усилителя стоит брать с показательной зависимостью сопротивления от угла поворота ручки регулятора. В этом случае, при повороте движка регулятора громкости звук в динамике будет нарастать плавно. Регулировка громкости будет линейной, так как показательная зависимость регулятора громкости компенсирует логарифмическую зависимость нашего слуха и в сумме станет линейной. При взгляде на рисунок это станет более понятно.


Зависимость сопротивления переменного резистора от угла поворота движка (А-линейная, Б-логарифмическая, В-показательная)

Здесь показаны графики зависимости сопротивления переменных резисторов разных типов: А – линейная, Б – логарифмическая, В – показательная. Как правило, на переменных резисторах отечественного производства указывается, какой зависимостью обладает переменный резистор. На тех же принципах основаны цифровые и электронные регуляторы громкости.

Читать еще:  Исковое заявление о принятии наследства

Также стоит отметить, что человеческое ухо воспринимает звуки, мощность которых различается на колоссальную величину в 10 000 000 000 000 раз! Таким образом, самый громкий звук отличается от самого тихого, который может уловить наш слух, на 130 дБ (10 000 000 000 000 раз).

Вторая причина широкого использования децибел является простота вычислений.

Согласитесь, что куда проще при вычислениях использовать небольшие числа вроде 10, 20, 60,80,100,130 (наиболее часто используемые числа при расчёте в децибелах) по сравнению с числами 100 (20 дБ), 1000 (30 дБ), 1000 000 (60 дБ),100 000 000 (80 дБ),10 000 000 000 (100 дБ), 10 000 000 000 000 (130 дБ). Ещё одним достоинством децибел является то, что их просто суммируют. Если проводить вычисления в разах, то числа необходимо умножать.

Например, 30 дБ + 30 дБ = 60 дБ (в разах: 1000 * 1000 = 1000 000). Думаю, с этим всё ясно.

Также децибелы очень удобны при графическом построении различных зависимостей. Все графики вроде диаграмм направленности антенн, амплитудно-частотных характеристик усилителей выполняют с применением децибел.

Децибел является безразмерной единицей измерения. Мы уже выяснили, что децибел на самом деле показывает, во сколько раз возросла, либо уменьшилась какая-либо величина (ток, напряжение, мощность). Отличие децибел от разов заключается лишь в том, что происходит измерение по логарифмическому масштабу. Чтобы это как-то обозначить и приписывают обозначение дБ. Так или иначе, при оценке приходится переходить от децибел к разам. Сравнивать с помощью децибел можно любые единицы измерения (не только ток, напряжение и проч.), так как децибел является относительной, безразмерной величиной.

Если указывается знак “-”, например, –1 дБ, то значение измеряемой величины, например, мощности, уменьшилось в 1,26 раз. Если перед децибелами не ставят никакого знака, то речь идёт об увеличении, росте величины. Это стоит учитывать. Иногда вместо знака “-” говорят о затуханиях, снижении коэффициента усиления.

Переход от децибел к разам.

На практике чаще всего приходится переходить от децибел к разам. Для этого есть простая формула:

Внимание! Данные формулы применяются для так называемых “энергетических” величин. Таких как энергия и мощность.

m = 10 (n / 10) ,где m – отношение в разах, n – отношение в децибелах.

Например, 1дБ равен 10 (1дБ / 10) = 1,258925…= 1,26 раза.

при 20 дБ: 10 (20дБ / 10) = 100 (увеличение величины в 100 раз)

при 10 дБ: 10 (10дБ / 10) = 10 (увеличение в 10 раз)

Но, не всё так просто. Есть и подводные камни. Например, затухание сигнала составляет -10 дБ. Тогда:

при -10 дБ: 10 (-10дБ / 10) = 0,1

Если мощность с 5 Вт уменьшилась до 0,5 Вт, то снижение мощности равно -10 дБ (уменьшению в 10 раз).

при -20 дБ: 10 (-20дБ / 10) = 0,01

Здесь аналогично. При снижении мощности с 5 Вт до 0,05 Вт, в децибелах падение мощности составит -20 дБ (уменьшению в 100 раз).

Таким образом, при -10 дБ мощность сигнала уменьшилась в 10 раз! При этом если мы перемножим начальную величину сигнала на 0,1 ,то и получим значение мощности сигнала при затухании в -10 дБ. Именно поэтому значение 0,1 и указано без «разов», как в предыдущих примерах. Учитывайте эту особенность при подстановке в данные формулы значений децибел со знаком «-«.

Переход от разов к децибелам можно осуществить по следующей формуле:

n = 10 * log10(m) ,где n – значение в децибелах, m – отношение в разах.

Например, рост мощности в 4 раза будет соответствовать значению в 6,021 дБ.

10 * log10(4) = 6,021 дБ.

Внимание! Для пересчёта отношений таких величин как напряжение и сила тока существуют немного иные формулы:

(Сила тока и напряжение, это так называемые “силовые” величины. Поэтому и формулы отличаются.)

Для перехода к децибелам: n = 20 * log10(m)

Для перехода от децибел к разам: m = 10 (n / 20)

n – значение в децибелах, m – отношение в разах.

Если Вы успешно дошли до этих строк, то считайте, что сделали ещё один весомый шаг в освоении электроники!

Ссылка на основную публикацию
Adblock
detector